
  



  

Prehistory

● A hypothetical successor to C named “D” was 
talked about on Usenet back in the 80's.

● Nothing much ever came of it



  

History

● Work began on D in late 1999
● D's first slashdot appearance

● http://developers.slashdot.org/story/01/08/15/23422
3/the-d-programming-language

● D1 released Jan 2007
● First D Conference 2007



  



  

D Today

● Rapid and dramatic development since D1
● International, worldwide development 

community
● We're doing the impossible - developing a 

major new language from grassroots support
● And what amazing grassroots support it is ...



  



  

Major Sponsors

● Facebook
● Sociomantic
● Remedy Games
● Andrew Edwards



  

Today

● Copy And Move Semantics
● Ali Çehreli

● Distributed Caching Compiler for D
● Robert Schadek

● Inside Regular Expressions
● Dmitry Olshansky

● Using D Alongside a Game Engine
● Manu Evans

● Concurrent Garbage Collection
● Leandro Lucarella



  

Tomorrow
● GDC

● Ian Buclaw

● Shared Libraries
● Martin Nowak

● C# to D
● Adam Wilson

● Web Development in D
● Vladimir Panteleev

● A Precise Garbage Collector for D
● Rainer Schütze 

● Higgs, an Experimental JIT Compiler in D
● Maxime Chevalier-Boisvert

● Falling Down: the birth of kerönÅ
● Andrew Edwards



  

Friday

● Metaprogramming in the Real World
● Don Clugston

● Code Analysis for D with AnalyzeD
● Stefan Rohe

● D-Specific Design Patterns
● David Simcha

● LDC
● David Nadlinger

● Effective SIMD for modern architectures
● Manu Evans

● Writing Testable Code
● Ben Gertzfield

● Quo Vadis?
● Andrei Alexandrescu



  

Vision

● Easy to read & understand code
● Provably correct
● Industrial Quality



  

Easy To Read & Understand

● code that looks right is right
● minimal boilerplate
● code looks like the problem being solved



  

Code That Looks Right Is Right

● and code that looks wrong is wrong



  

void[] read(string name)  {
    DWORD numread;
    auto namez = toMBSz(name);
    auto  h=CreateFileA(namez,GENERIC_READ,FILE_SHARE_READ,null, OPEN_EXISTING,
            FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN,cast(HANDLE)null);
    if (h == INVALID_HANDLE_VALUE) goto err1;
    auto size = GetFileSize(h, null);
    if (size == INVALID_FILE_SIZE)  goto err2;
    auto buf = std.gc.malloc(size);
    if (buf)  std.gc.hasNoPointers(buf.ptr);
    if (ReadFile(h,buf.ptr,size,&numread,null) != 1)  goto err2;
    if (numread != size) goto err2;
    if (!CloseHandle(h)) goto err;
    return buf[0 .. size];

err2:
    CloseHandle(h);
err:
    delete buf;
err1:
    throw new FileException(name, GetLastError());
}

Pre-Scope Version of file.read()



  

Using Scope – No Goto's

void[] read(in char[] name, size_t upTo = size_t.max) {
    alias TypeTuple!(GENERIC_READ,
            FILE_SHARE_READ, (SECURITY_ATTRIBUTES*).init, OPEN_EXISTING,
            FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN,
            HANDLE.init)
        defaults;
    auto h = CreateFileA(toMBSz(name), defaults);
 
    cenforce(h != INVALID_HANDLE_VALUE, name);
    scope(exit) cenforce(CloseHandle(h), name);
    auto size = GetFileSize(h, null);
    cenforce(size != INVALID_FILE_SIZE, name);
    size = min(upTo, size);
    auto buf = GC.malloc(size, GC.BlkAttr.NO_SCAN)[0 .. size];
    scope(failure) delete buf;
 
    DWORD numread = void;
    cenforce(ReadFile(h,buf.ptr, size, &numread, null) == 1
            && numread == size, name);
    return buf[0 .. size];
}



  

Minimal Boilerplate

“The IDE is great. With one key, I can add 100 
lines of boilerplate!”



  

Looks Like the Problem Being 
Solved

import std.stdio;
import std.array;
import std.algorithm;

void main() {
    stdin.byLine(KeepTerminator.yes)
    map!(a => a.idup).
    array.
    sort.
    copy(
       stdout.lockingTextWriter());
}



  

Provably Correct

● Provable memory safety
● Provable purity and immutability
● Contract programming

– No 'faith based' programming



  

Provable Memory Safety

● Memory safety means “no memory corruption”
● enabled with @safe attribute

● works by disallowing things like pointer arithmetic

● safety is transitive
● turtles all the way down



  

Provable Purity and Immutability

● solid foundation for functional programming
● FP has excellent track record of producing 

robust, reliable programs
● major aid to understanding code

Toi Mine



  

Contract Programming

● some things can only be checked at runtime
● contracts are used to validate that assertions 

about data are true
● (contracts are NOT for validating user input)

● can also be used by advanced optimizer to 
generate better code



  

Industrial Quality

● No-compromise performance
● Scales to enormous programs
● Management tools

LTHS Industrial Tech Dept



  

No Compromise Performance

● Semantics that map directly onto 
hardware
● basic types are typical native 

machine types
● even SIMD types

● Uses modern optimizing back ends
● LLVM, GCC, Digital Mars

● Semantics amenable to powerful 
optimization



  

Scales to Enormous Programs

● Separate compilation
● Strong encapsulation semantics

● no global namespace
● anti-hijacking
● voldemort types

● High speed compilation



  

Management Tools

● Documentation generation
● Unit test
● Coverage analysis



  

Conclusion

● D has fantastic support from the community
● Very strong technical content for this 

conference
● D will be the premier language for high 

performance high productivity computing
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