

Prehistory

● A hypothetical successor to C named “D” was
talked about on Usenet back in the 80's.

● Nothing much ever came of it

History

● Work began on D in late 1999
● D's first slashdot appearance

● http://developers.slashdot.org/story/01/08/15/23422
3/the-d-programming-language

● D1 released Jan 2007
● First D Conference 2007

D Today

● Rapid and dramatic development since D1
● International, worldwide development

community
● We're doing the impossible - developing a

major new language from grassroots support
● And what amazing grassroots support it is ...

Major Sponsors

● Facebook
● Sociomantic
● Remedy Games
● Andrew Edwards

Today

● Copy And Move Semantics
● Ali Çehreli

● Distributed Caching Compiler for D
● Robert Schadek

● Inside Regular Expressions
● Dmitry Olshansky

● Using D Alongside a Game Engine
● Manu Evans

● Concurrent Garbage Collection
● Leandro Lucarella

Tomorrow
● GDC

● Ian Buclaw

● Shared Libraries
● Martin Nowak

● C# to D
● Adam Wilson

● Web Development in D
● Vladimir Panteleev

● A Precise Garbage Collector for D
● Rainer Schütze

● Higgs, an Experimental JIT Compiler in D
● Maxime Chevalier-Boisvert

● Falling Down: the birth of kerönÅ
● Andrew Edwards

Friday

● Metaprogramming in the Real World
● Don Clugston

● Code Analysis for D with AnalyzeD
● Stefan Rohe

● D-Specific Design Patterns
● David Simcha

● LDC
● David Nadlinger

● Effective SIMD for modern architectures
● Manu Evans

● Writing Testable Code
● Ben Gertzfield

● Quo Vadis?
● Andrei Alexandrescu

Vision

● Easy to read & understand code
● Provably correct
● Industrial Quality

Easy To Read & Understand

● code that looks right is right
● minimal boilerplate
● code looks like the problem being solved

Code That Looks Right Is Right

● and code that looks wrong is wrong

void[] read(string name) {
 DWORD numread;
 auto namez = toMBSz(name);
 auto h=CreateFileA(namez,GENERIC_READ,FILE_SHARE_READ,null, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN,cast(HANDLE)null);
 if (h == INVALID_HANDLE_VALUE) goto err1;
 auto size = GetFileSize(h, null);
 if (size == INVALID_FILE_SIZE) goto err2;
 auto buf = std.gc.malloc(size);
 if (buf) std.gc.hasNoPointers(buf.ptr);
 if (ReadFile(h,buf.ptr,size,&numread,null) != 1) goto err2;
 if (numread != size) goto err2;
 if (!CloseHandle(h)) goto err;
 return buf[0 .. size];

err2:
 CloseHandle(h);
err:
 delete buf;
err1:
 throw new FileException(name, GetLastError());
}

Pre-Scope Version of file.read()

Using Scope – No Goto's

void[] read(in char[] name, size_t upTo = size_t.max) {
 alias TypeTuple!(GENERIC_READ,
 FILE_SHARE_READ, (SECURITY_ATTRIBUTES*).init, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN,
 HANDLE.init)
 defaults;
 auto h = CreateFileA(toMBSz(name), defaults);

 cenforce(h != INVALID_HANDLE_VALUE, name);
 scope(exit) cenforce(CloseHandle(h), name);
 auto size = GetFileSize(h, null);
 cenforce(size != INVALID_FILE_SIZE, name);
 size = min(upTo, size);
 auto buf = GC.malloc(size, GC.BlkAttr.NO_SCAN)[0 .. size];
 scope(failure) delete buf;

 DWORD numread = void;
 cenforce(ReadFile(h,buf.ptr, size, &numread, null) == 1
 && numread == size, name);
 return buf[0 .. size];
}

Minimal Boilerplate

“The IDE is great. With one key, I can add 100
lines of boilerplate!”

Looks Like the Problem Being
Solved

import std.stdio;
import std.array;
import std.algorithm;

void main() {
 stdin.byLine(KeepTerminator.yes)
 map!(a => a.idup).
 array.
 sort.
 copy(
 stdout.lockingTextWriter());
}

Provably Correct

● Provable memory safety
● Provable purity and immutability
● Contract programming

– No 'faith based' programming

Provable Memory Safety

● Memory safety means “no memory corruption”
● enabled with @safe attribute

● works by disallowing things like pointer arithmetic

● safety is transitive
● turtles all the way down

Provable Purity and Immutability

● solid foundation for functional programming
● FP has excellent track record of producing

robust, reliable programs
● major aid to understanding code

Toi Mine

Contract Programming

● some things can only be checked at runtime
● contracts are used to validate that assertions

about data are true
● (contracts are NOT for validating user input)

● can also be used by advanced optimizer to
generate better code

Industrial Quality

● No-compromise performance
● Scales to enormous programs
● Management tools

LTHS Industrial Tech Dept

No Compromise Performance

● Semantics that map directly onto
hardware
● basic types are typical native

machine types
● even SIMD types

● Uses modern optimizing back ends
● LLVM, GCC, Digital Mars

● Semantics amenable to powerful
optimization

Scales to Enormous Programs

● Separate compilation
● Strong encapsulation semantics

● no global namespace
● anti-hijacking
● voldemort types

● High speed compilation

Management Tools

● Documentation generation
● Unit test
● Coverage analysis

Conclusion

● D has fantastic support from the community
● Very strong technical content for this

conference
● D will be the premier language for high

performance high productivity computing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

